skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hejase, Hussein A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An emerging discovery in phylogenomics is that interspecific gene flow has played a major role in the evolution of many different organ- isms. To what extent is the Tree of Life not truly a tree reflecting strict “vertical” divergence, but rather a more general graph structure known as a phylogenetic network which also captures “horizontal” gene flow? The answer to this fundamental question not only depends upon densely sam- pled and divergent genomic sequence data, but also computational meth- ods which are capable of accurately and efficiently inferring phylogenetic networks from large-scale genomic sequence datasets. Recent methodolog- ical advances have attempted to address this gap. However, in the 2016 performance study of Hejase and Liu, state-of-the-art methods fell well short of the scalability requirements of existing phylogenomic studies. The methodological gap remains: how can phylogenetic networks be accurately and efficiently inferred using genomic sequence data involv- ing many dozens or hundreds of taxa? In this study, we address this gap by proposing a new phylogenetic divide-and-conquer method which we call FastNet. We conduct a performance study involving a range of evolutionary scenarios, and we demonstrate that FastNet outperforms state-of-the-art methods in terms of computational efficiency and topo- logical accuracy. 
    more » « less