- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Kevin J. (3)
-
Hejase, Hussein A (2)
-
Hejase, Hussein A. (2)
-
Smith, Jack (2)
-
Wang, Wei (2)
-
Bonito, Gregory M (1)
-
Bonito, Gregory M. (1)
-
Edger, Patrick P. (1)
-
Liu, Kevin J (1)
-
Pol, Natalie Vande (1)
-
Vande Pol, Natalie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hejase, Hussein A; Vande Pol, Natalie; Bonito, Gregory M; Liu, Kevin J. (, RECOMB-CG 2018. Lecture Notes in Computer Science)An emerging discovery in phylogenomics is that interspecific gene flow has played a major role in the evolution of many different organ- isms. To what extent is the Tree of Life not truly a tree reflecting strict “vertical” divergence, but rather a more general graph structure known as a phylogenetic network which also captures “horizontal” gene flow? The answer to this fundamental question not only depends upon densely sam- pled and divergent genomic sequence data, but also computational meth- ods which are capable of accurately and efficiently inferring phylogenetic networks from large-scale genomic sequence datasets. Recent methodolog- ical advances have attempted to address this gap. However, in the 2016 performance study of Hejase and Liu, state-of-the-art methods fell well short of the scalability requirements of existing phylogenomic studies. The methodological gap remains: how can phylogenetic networks be accurately and efficiently inferred using genomic sequence data involv- ing many dozens or hundreds of taxa? In this study, we address this gap by proposing a new phylogenetic divide-and-conquer method which we call FastNet. We conduct a performance study involving a range of evolutionary scenarios, and we demonstrate that FastNet outperforms state-of-the-art methods in terms of computational efficiency and topo- logical accuracy.more » « less
-
Wang, Wei; Smith, Jack; Hejase, Hussein A; Liu, Kevin J (, Proceedings of the Sixteenth RECOMB Comparative Genomics Satellite Conference (RECOMB-CG))
-
Hejase, Hussein A.; Pol, Natalie Vande; Bonito, Gregory M.; Edger, Patrick P.; Liu, Kevin J. (, Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics)
An official website of the United States government
